Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 909180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909511

RESUMO

Neuroendocrine liver metastases (LM-NEN) develop in a considerable proportion of patients with gastroenteropancreatic neuroendocrine neoplasms. There is a paucity of experimental models that accurately recapitulate this complex metastatic human liver microenvironment precluding scientific and clinical advancements. Here, we describe the development of a novel personalised immunocompetent precision cut tumour slice (PCTS) model for LM-NEN using resected human liver tissue. The histological assessment throughout the culture demonstrated that slices maintain viability for at least 7 days and retain the cellular heterogeneity of the original tumour. Essential clinical features, such as patient-specific histoarchitecture, tumour grade, neuroendocrine differentiation and metabolic capacity, are preserved in the slices. The PCTS also replicate the tumor-specific immunological profile as shown by the innate and adaptive immunity markers analysis. Furthermore, the study of soluble immune checkpoint receptors in the culture supernatants proves that these immunomodulators are actively produced by LM-NEN and suggests that this process is epithelium-dependent. This model can be employed to investigate these pathways and provides a powerful platform for mechanistic, immunological and pre-clinical studies.


Assuntos
Neoplasias Hepáticas , Tumores Neuroendócrinos , Humanos , Neoplasias Hepáticas/secundário , Tumores Neuroendócrinos/patologia , Microambiente Tumoral
2.
R Soc Open Sci ; 9(5): 211553, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620008

RESUMO

Iron-reducing and iron-oxidizing bacteria are of interest in a variety of environmental and industrial applications. Such bacteria often co-occur at oxic-anoxic gradients in aquatic and terrestrial habitats. In this paper, we present the first computational agent-based model of microbial iron cycling, between the anaerobic ferric iron (Fe3+)-reducing bacteria Shewanella spp. and the microaerophilic ferrous iron (Fe2+)-oxidizing bacteria Sideroxydans spp. By including the key processes of reduction/oxidation, movement, adhesion, Fe2+-equilibration and nanoparticle formation, we derive a core model which enables hypothesis testing and prediction for different environmental conditions including temporal cycles of oxic and anoxic conditions. We compared (i) combinations of different Fe3+-reducing/Fe2+-oxidizing modes of action of the bacteria and (ii) system behaviour for different pH values. We predicted that the beneficial effect of a high number of iron-nanoparticles on the total Fe3+ reduction rate of the system is not only due to the faster reduction of these iron-nanoparticles, but also to the nanoparticles' additional capacity to bind Fe2+ on their surfaces. Efficient iron-nanoparticle reduction is confined to pH around 6, being twice as high than at pH 7, whereas at pH 5 negligible reduction takes place. Furthermore, in accordance with experimental evidence our model showed that shorter oxic/anoxic periods exhibit a faster increase of total Fe3+ reduction rate than longer periods.

3.
PLoS Comput Biol ; 17(12): e1009645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898608

RESUMO

Aspergillus fumigatus is an important human fungal pathogen and its conidia are constantly inhaled by humans. In immunocompromised individuals, conidia can grow out as hyphae that damage lung epithelium. The resulting invasive aspergillosis is associated with devastating mortality rates. Since infection is a race between the innate immune system and the outgrowth of A. fumigatus conidia, we use dynamic optimization to obtain insight into the recruitment and depletion of alveolar macrophages and neutrophils. Using this model, we obtain key insights into major determinants of infection outcome on host and pathogen side. On the pathogen side, we predict in silico and confirm in vitro that germination speed is an important virulence trait of fungal pathogens due to the vulnerability of conidia against host defense. On the host side, we found that epithelial cells, which have been underappreciated, play a role in fungal clearance and are potent mediators of cytokine release. Both predictions were confirmed by in vitro experiments on established cell lines as well as primary lung cells. Further, our model affirms the importance of neutrophils in invasive aspergillosis and underlines that the role of macrophages remains elusive. We expect that our model will contribute to improvement of treatment protocols by focusing on the critical components of immune response to fungi but also fungal virulence traits.


Assuntos
Células Epiteliais Alveolares/imunologia , Aspergilose/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Células Cultivadas , Biologia Computacional , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Neutrófilos/imunologia , Esporos Fúngicos/imunologia
4.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
5.
Curr Opin Biotechnol ; 68: 282-291, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33770632

RESUMO

In this review, we summarize and briefly discuss various approaches to modeling the metabolism in human immune cells, with a focus on energy metabolism. These approaches include metabolic reconstruction, elementary modes, and flux balance analysis, which are often subsumed under constraint-based modeling. Further approaches are evolutionary game theory and kinetic modeling. Many immune cells such as macrophages show the Warburg effect, meaning that glycolysis is upregulated upon activation. We outline a minimal model for explaining that effect using optimization. The effect of a confrontation with pathogen cells on immunometabolism is highlighted. Models describing the differences between M1 and M2 macrophages, ROS production in neutrophils, and tryptophan metabolism are discussed. Obstacles and future prospects are outlined.


Assuntos
Glicólise , Macrófagos , Metabolismo Energético , Humanos , Cinética
6.
Open Biol ; 10(11): 200206, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33142084

RESUMO

Most unicellular organisms live in communities and express different phenotypes. Many efforts have been made to study the population dynamics of such complex communities of cells, coexisting as well-coordinated units. Minimal models based on ordinary differential equations are powerful tools that can help us understand complex phenomena. They represent an appropriate compromise between complexity and tractability; they allow a profound and comprehensive analysis, which is still easy to understand. Evolutionary game theory is another powerful tool that can help us understand the costs and benefits of the decision a particular cell of a unicellular social organism takes when faced with the challenges of the biotic and abiotic environment. This work is a binocular view at the population dynamics of such a community through the objectives of minimal modelling and evolutionary game theory. We test the behaviour of the community of a unicellular social organism at three levels of antibiotic stress. Even in the absence of the antibiotic, spikes in the fraction of resistant cells can be observed indicating the importance of bet hedging. At moderate level of antibiotic stress, we witness cyclic dynamics reminiscent of the renowned rock-paper-scissors game. At a very high level, the resistant type of strategy is the most favourable.


Assuntos
Evolução Biológica , Teoria do Jogo , Modelos Teóricos , Dinâmica Populacional , Algoritmos
7.
Cell Mol Life Sci ; 77(3): 467-480, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31776589

RESUMO

Pathogenic microorganisms entail enormous problems for humans, livestock, and crop plants. A better understanding of the different infection strategies of the pathogens enables us to derive optimal treatments to mitigate infectious diseases or develop vaccinations preventing the occurrence of infections altogether. In this review, we highlight the current trends in mathematical modeling approaches and related methods used for understanding host-pathogen interactions. Since these interactions can be described on vastly different temporal and spatial scales as well as abstraction levels, a variety of computational and mathematical approaches are presented. Particular emphasis is placed on dynamic optimization, game theory, and spatial modeling, as they are attracting more and more interest in systems biology. Furthermore, these approaches are often combined to illuminate the complexities of the interactions between pathogens and their host. We also discuss the phenomena of molecular mimicry and crypsis as well as the interplay between defense and counter defense. As a conclusion, we provide an overview of method characteristics to assist non-experts in their decision for modeling approaches and interdisciplinary understanding.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Teóricos , Biologia de Sistemas/métodos
8.
Hepatol Int ; 13(1): 51-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30515676

RESUMO

Human precision-cut liver slices represent a robust and versatile ex vivo model which retains the complex and multi-cellular histoarchitecture of the hepatic environment. As such, they represent an ideal model to investigate the mechanisms of liver injury and for the identification of novel therapeutic targets. Schematic overview to highlight the utility of precision-cut liver slices as a relevant and versatile ex-vivo model of liver disease. Top panel; Precision cut liver slices (PCLS) exposed to ethanol develop mega-mitochondria, a classical hallmark of Alcoholic Liver Disease (ALD). Right panel; PCLS from liver tumours can be used as a model for liver cancer and can be used to investigate cancer-immune cell interactions by co-culturing with matched immune cells. Bottom panel; Exposure to a mixture of oleic and linoleic acids can simulate Non-Alcoholic Fatty Liver Disease (NAFLD). Left panel; PCLS can be infected with Hepatitis B and C virus and used as a model to study viral infection and replication.


Assuntos
Hepatopatias/patologia , Fígado/patologia , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Manejo de Espécimes/métodos , Células Tumorais Cultivadas
9.
Biochem Soc Trans ; 45(4): 1035-1043, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28754658

RESUMO

Understanding optimality principles shaping the evolution of regulatory networks controlling metabolism is crucial for deriving a holistic picture of how metabolism is integrated into key cellular processes such as growth, adaptation and pathogenicity. While in the past the focus of research in pathway regulation was mainly based on stationary states, more recently dynamic optimization has proved to be an ideal tool to decipher regulatory strategies for metabolic pathways in response to environmental cues. In this short review, we summarize recent advances in the elucidation of optimal regulatory strategies and identification of optimal control points in metabolic pathways. We discuss biological implications of the discovered optimality principles on genome organization and provide examples how the derived knowledge can be used to identify new treatment strategies against pathogens. Furthermore, we briefly discuss the variety of approaches for solving dynamic optimization problems and emphasize whole-cell resource allocation models as an important emerging area of research that will allow us to study the regulation of metabolism on the whole-cell level.

10.
J R Soc Interface ; 14(132)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28701506

RESUMO

The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage-Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage-C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells.


Assuntos
Candida albicans/fisiologia , Teoria do Jogo , Macrófagos/fisiologia , Modelos Biológicos , Evolução Biológica , Simulação por Computador , Humanos
11.
PLoS Comput Biol ; 13(2): e1005371, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28212377

RESUMO

A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, methods from dynamic optimization are ideally suited since they allow to uncover optimality principles behind the regulation of metabolic networks. We used dynamic optimization to investigate the influence of toxic intermediates in connection with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results predict that transcriptional regulation favors the control of highly efficient enzymes with less toxic upstream intermediates to reduce accumulation of toxic downstream intermediates. We show that the derived optimality principles hold by the analysis of the interplay between intermediate toxicity and pathway regulation in the metabolic pathways of over 5000 sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia coli as an example, we show how knowledge about the relation of regulation, kinetic efficiency and intermediate toxicity can be used to identify drug targets, which control endogenous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the potential of our findings for the development of antifungal drugs.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipopolissacarídeos/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Algoritmos , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Simulação por Computador , Escherichia coli/citologia , Cinética , Taxa de Depuração Metabólica , Análise do Fluxo Metabólico/métodos
13.
Sci Rep ; 6: 34589, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713552

RESUMO

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Assuntos
Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Quirópteros , Humanos
14.
BMC Bioinformatics ; 16: 163, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25982966

RESUMO

BACKGROUND: Adjusting the capacity of metabolic pathways in response to rapidly changing environmental conditions is an important component of microbial adaptation strategies to stochastic environments. In this work, we use advanced dynamic optimization techniques combined with theoretical models to study which reactions in pathways are optimally targeted by regulatory interactions in order to minimize the regulatory effort that is required to adjust the flux through a complex metabolic network. Moreover, we analyze how constraints in the speed at which an organism can respond on a proteomic level influences these optimal targets of pathway control. RESULTS: We find that limitations in protein biosynthetic rates have a strong influence. With increasing protein biosynthetic rates the regulatory effort targeting the initial enzyme in a pathway is reduced while the regulatory effort in the terminal enzyme is increased. Studying the impact of allosteric regulation for different pathway topologies, we find that the presence of feedback inhibition by products of metabolic pathways allows organisms to reduce the regulatory effort that is required to control a metabolic pathway in all cases. In a linear pathway this even leads to the case where the sole transcriptional regulatory control of the terminal enzyme is sufficient to control flux through the entire pathway. We confirm the utilization of these pathway regulation strategies through the large-scale analysis of transcriptional regulation in several hundred prokaryotes. CONCLUSIONS: This work expands our knowledge about optimal programs of pathway control. Optimal targets of pathway control strongly depend on the speed at which proteins can be synthesized. Moreover, post-translational regulation such as allosteric regulation allows to strongly reduce the number of transcriptional regulatory interactions required to control a metabolic pathway across different pathway topologies.


Assuntos
Biologia Computacional/métodos , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Modelos Teóricos , Proteínas/metabolismo , Proteômica/métodos , Algoritmos , Regulação Alostérica , Escherichia coli/genética , Escherichia coli/metabolismo
15.
Metabolites ; 5(2): 252-69, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25927816

RESUMO

In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...